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Abstract: Graphene structural defects, namely edges, step-edges and wrinkles are susceptible to severe 

mechanical deformation and stresses under frictional operations. Applied forces cause deformation by 

folding, buckling, bending and tearing the defective sites of graphene, which lead to a remarkable decline 

in normal load and friction bearing capacity. In this work, we experimentally quantified the maximal 

normal and friction forces corresponding to the damage thresholds of the different investigated defects 

as well as their pull-out (adhesion) forces. Horizontal wrinkles (with respect to the basal plane, i.e. folded) 

sustained the highest normal load, up to 317 nN, during sliding, whereas for vertical (i.e. standing 

collapsed) wrinkles, step-edges and edges, the load bearing capacities are up to 113 nN, 74 nN and 

63±5 nN, respectively. The related deformation mechanisms were also experimentally investigated by 

varying the normal load up to the initiation of the damage from the investigated defects and extended 

with the numerical results from Molecular Dynamics and Finite Element Method simulations. 

Introduction 

Graphene is a robust choice for coating surfaces to achieve improved tribological properties such 

as superlubricity 1, tuned friction 2, and high load bearing capability which results in antiwear 

characteristics 3. Graphene failure under frictional loads 4-7 becomes predominat in the presence of 

structural defects that are thus taking a central interest in the materials research community due to their 
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implication on the advanced applications of graphene related materials. Most of the reported exotic 

characteristics of graphene are refer to defect-free films thus neglecting the dramatic role of structural 

flaws and imperfections. Failure of graphene mostly occurs at structural defects such as the edges (E, 

i.e. the perimeter of an atomic layer over a different substrate), step-edges (SE, i.e. the perimeter of an 

atomic layer over another atomic layer), wrinkles (Wr) 8-9, grain boundaries (GB) 10-11 and vacancies 12. 

These defects introduce significant alterations in the graphene properties that often compromise its 

durability and functionality. Grain boundaries and wrinkles, for example, can severely weaken the 

mechanical strength of graphene membranes. Indeed, the fracture strength might be decreased by order 

of magnitude10, 13. Isolated defects, such as mono-vacancies and Stone-Wales dislocations, slits, and 

holes also compromise the mechanical properties of graphene 12, 14-16.  

E and SE are potentially the most dire defects among lamellar materials. Several reports 

explained that atoms belonging to E/SE behave differently from the atoms of basal plane in both physical 

14,17-18 and chemical aspects 11, 19 due to the presence of dangling bonds. Atomic Force Microscopy (AFM) 

studies revealed that the mechanical response of the E/SE defects is also strongly influenced by the size 

and shape of the AFM tip, environmental conditions (such as the presence of airborne impurities, nitrogen 

atmosphere and vacuum), and surface energy landscape, as reported extensively 20-25. For example, 

large energy barriers, i.e. the difference between maximum potential energy of slide probe at basal plane 

and at step-edge, was proposed by Ye and Martini 26 as the primary cause of graphene rupture during 

AFM operations. Other structural defects include Wr and GB, which are commonly produced during 

chemical vapour deposition (CVD) of polycrystalline graphene 9, 27. These structural defects have higher 

binding energy than basal graphene plane which is responsible for higher interaction with foreign particles 

and higher friction forces 27. Yu et al.27 revealed enhanced sp3 state and lower van der Waals stabilization 

of Wr as compared to graphene basal plane, which causes the Wr detachment from the substrate. Vasic 

et al.19 found that the bearing loading capacity of graphene (i.e threshold of normal force to initiate wear) 

significantly drops (by nearly 1 order of magnitude) in the presence of wrinkles.  

AFM is one of the most effective techniques to study nano-structural surfaces and defects 28-29. In 

particular, its sensitivity is able to detect short-range interactions at the atomic level30 and to manipulate 

structures at the nano 31 and atomic scale 32. Friction Force Microscopy (FFM), a subcategory of AFM 

technique, allows for the detection of friction forces from atomic to micro scale. Sliding of the tip along 

the fast scan axis in contact with the substrate generates a lateral force (FL) on the apex which causes 

the cantilever torsion around its longitudinal direction; accordingly, graphene surface defects, like 

vacancies, adsorbed atoms and molecules produces a visible contrast in the lateral force image 22. Higher 

friction forces at E/SE and Wr are attributed to the Schwoebel-Ehrlich barrier at atomic steps 23, 33 and to 

the ratchet effect 34-35 respectively. Recently, friction and wear phenomena of the edge of graphene on 

silica substrate have been explained through buckling and lower interaction of the edge atoms with silica 

surface 19 whereas the height of the E region was reported as higher than that of graphene basal plane20 

(due to puckering effect) and is responsible for the folding and tearing of graphene edges.  
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In the present work, we compared the load bearing capacity, friction and adhesion forces for different 

types of line defects of 2D material, namely E, SE and Wr (horizontal and vertical types). In particular, 

we elucidated the frictional stability of structural defects for polycrystalline graphene. We also endeavored 

to comprehensively investigate the mechanical deformation phenomena of the E, SE and Wr of the 

graphene layer, conducted through the systematic increase of the applied normal force (FN) and 

measuring the friction forces (FF). Molecular Dynamics (MD) simulations have been conducted in order 

to explicate the experimental observations. 

 

Results and Discussion  

Commercially obtained CVD produced graphene transferred on silica substrate have been used in our 

investigation. The scanning electron microscopy (SEM) image illustrating the distribution of single 

graphene layer (1LG, bright color), bi-layer (2LG, dark patches) and Wr in fig.1a. The presence of 1LG 

and 2LG are also verified by Raman spectroscopy by measuring the ratio intensity of 2D and G peak 36, 

fig. 1b. The AFM topography of graphene is showing various landscape namely 1LG, 2LG, SE and Wr 

in fig. 1c. The high-resolution 3D-AFM topography shows a morphological contrast among the Wr and 

graphene basal plain of 1LG and 2LG in fig. 1d. The distribution of the Wr and the intrinsic ripples in the 

graphene significantly influence its roughness and topological conformation. The roughness (root mean 

square) of 1LG is measured as 0.320 nm is slightly higher than 2LG, which is 0.314 nm. The roughness 

of transferred CVD graphene is associated to the method of transfer, graphene thickness, substrate 

interaction and tip radius used for the investigation37. In the present work, silicon cantilever tip (apex radii 

~ 25 nm) is used for the roughness measurement and for the low load friction measurement (see 

supplementary information figure S1 for a collection of images at different locations). Subsequently, 

diamond-like carbon (DLC) coated tip has been used for high load measurements to avoid any wear at 

the tip apex (radii ~ 100 nm). 
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Figure 1: Topographical information of CVD graphene on silica substrate. (a) SEM image of the 

CVD graphene showing distribution of Wr and 2LG (dark patches). (b) Raman spectra confirming the 

presence of 2LG and 1LG (from ratio of 2D and G) with structural disorder (D-peak). (c) AFM 

topographical image showing the basal plane consisting of 1LG, some 2LG islands and the crossed 

network of Wr. (d) High resolution 3-D AFM topography showing morphological contrast between Wr and 

graphene basal plain. 

Wr in the graphene sheet show a significant contrast in the friction map, fig. 2a, which is quantitatively 

revealed by combining topographical and lateral force profile, fig. 2b. The trace and re-trace scanning 

direction of the tip is showing highest lateral force at the Wr and lowest value at the 2LG with intermediate 

values of 1LG and SE. The area under the lateral force loop is associated with friction dissipation by the 

cantilever during sliding, which is highest at the Wr region. The frictional characteristics of the Wr 

depends on several factors: altitude, width, orientation to the fast scan axis and the normal force (FN) 

applied. The analysis proposed on fig. 2(c, d) at constant load FN ≈ 35nN compare different Wr orientation 

in the same image i.e. measured with same tip condition. We obtained maximum value of the FF for Wr 

axis of fixed amplitude of 2 nm oriented at 90 o to the scanning axis and minimal value for Wr oriented 
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nearly 7o with respect to the scan axis showing the tendency towards parallel alignment of the Wr axis 

leads to least friction force. 

 

Figure 2: Friction force as a function of Wr orientation. (a) Friction map that include lateral force 

values measured in trace and re-trace scanning direction of cantilever on CVD graphene. It is showing 

highest FF on Wr, lowest on 2LG (bright color corresponds to higher friction force) and intermediate for 

1LG. (b) Topography and lateral force line profile along 2LG region and a Wr (yellow dashed line on 

panel a). (c) Filtered topography image, Wr have been highlighted making red regions with amplitude of 

2 nm. Their orientation is measured with respect to x-axis corresponding to fast scan direction. (d) Friction 

force as a function of Wr orientation at FN = 35 nN. Inset is showing SEM image of the tip used for the 

friction measurement. 

The orientation of the Wr has a significant impact on their friction and load bearing capabilities in sliding 

operations. Two examples are illustrated in fig. 3 and fig. 4, in which Wr axis is oriented to the scan axis 

of ~ 64 o and ~ 90 o respectively. Under applied FN range from -50 nN to 320 nN, Wr oriented at ~ 64 o 

(fig.3c) can bear a higher FN ≈ 260 nN than at Wr axis oriented ~ 90o at the critical FN ≈ 113 nN (fig.4 d, 
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h). It is suggesting that the critical load scale as the component of FF perpendicular to the Wr, which we 

may refer to as the cutting force.  

 

Figure 3: Surface wear of Wr and 1LG measured with DLC probes. (a) AFM topography of the CVD 

graphene before (inset) and after wear. (b) Friction map of the same region showing distribution of FF 

along the Wr and 1LG. The FN is increased at the interval of 60 seconds from top to bottom direction 

(slow scan axis) up to wear of the Wr region. The orientation of the Wr is nearly 64° with respect to the 

fast scan axis of the cantilever. (c) FF as a function of FN in the 1LG region and at the Wr up to wear of 

the Wr at FN = 260nN as marked by a sudden increase of FF (dashed ellipse). Defect free 1LG is showing 

lower FF than the Wr for all FN values and no wear has been observed up to 300 nN. (d) Friction profile. 

The Wr axis oriented ~ 90o with respect to the cantilever scan direction, is ideal to study the phenomenon 

of friction induced deformation, since it induces maximum deflection in the Wr. The topography and FL 

maps are reported in fig. 4 for increasing FN equal to -100 nN (fig. 4 (a,e), 11nN (b, f), 68 nN (c, g), and 

113 nN (d, h) shows different extent of deflection up to wear for the highest normal load. At lower values 

of FN (around -100 nN, where adhesion is prevailing), the wrinkle is more resistant to bending and into 
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traction and shows broader FF distribution along its length fig. 4(a, e). With the increase of FN ≈ 11 nN, a 

lateral elastic deflection occurs towards the scanning direction of the tip (fig. 4 (b, f). At FN ≈ 68 nN several 

local folds, observed at 11 nN, merge into a larger global deflection, overcoming the stiffness and the 

adhesion on the substrate of the whole wrinkle in fig. 4 (c, g). At FN ≈ 113 nN (fig. 4(d, h), initiation of the 

wear has been observed along the Wr axis, leading to significant increase of the FF values as marked by 

black arrow. The schematic view illustrates the respective deflections of the Wr at different FN and the 

wear initiated region. Nanoscale frictional characteristics of 1LG is associated to the several factors like 

substrate roughness37, electron-phonon coupling38 and the puckering effect, in which graphene 

elastically buckled out in front of the sliding tip20. The presence of the Wr enhances the FF due to its 

bending flexibility during the scanning of the cantilever as compare to the defect free 1LG for all applied 

FN. We did not observe any wear in the defect free basal of 1LG in the applied load range. 

  

Figure 4: Deformation and wear of the vertical Wr in CVD graphene. Topography (a-d) and FL map 

(with scanning direction from left to right) (e-h) at increasing normal force, from -100 nN to 113 nN. The 

orientation of the wrinkle is nearly 90o to the fast scanning direction. The height of the wrinkle around 1 

nm, changes at different FN, indicating normal and lateral deformations. The negative value of the FL map 

is due to the use of single channel “trace”. The “wear” has been observed only at the highest normal load 

of 113 nN. 
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The worn region of graphene appears to be the weakest attributes for further damage and rupturing due 

to the generation of the edges. The height of the edges relates to the friction signal in which thicker edges 

of 2LG has slightly higher friction than the 1LG edge as illustrated by friction line profile in fig 3(b, d) and 

figure S2 (a-d) for both CVD and mechanical exfoliated graphene respectively. Nevertheless, the 

frictional characteristic of the graphene E is different from the Wr. The latter showed bending and 

stretching; while E and SE display the folding and buckling mechanisms before wear that will be 

discussed in the present section. Here, we compare the FF values for E, Wr and defect free 1LG graphene 

in a single acquisition for different FN values. Fig. 5 shows topographies (a-d) and FF maps (e-h) of Wrs 

(horizontal and vertical configurations), E, 1LG and silica substrate under FN (namely, 11 nN, 68 nN, 113 

nN and 205 nN). Initially, the wear of the graphene is observed in the E region at around 68 nN, for 

vertical wrinkle at 113 nN (marked by a dashed circle) whereas the horizontal Wr was unaffected even 

at the highest FN of ~320 nN, thus more robust against “cutting”. The increment of FN after 11 nN further 

removed the graphene carbon atoms from the E region via folding and tearing as the “peel induced 

rupture” mechanism39. FF vs FN values are reported in fig. 5i, j, showing highest FF for the silica substrate 

and lowest for the CVD 1LG with intermediate trends of Wr and E. This clearly shows the role of single 

layer graphene in reducing friction as solid-state lubricant, despite the possible presence of defects. In 

fig. 5j the two different Wr topologies are compared in terms of FF. Vertical Wr shows comparable FF to 

the horizontal configuration for different FN up to 200 nN of FN. Nevertheless, horizontal Wr is showing 

lower FF at high load conditions (i.e. FN > 200 nN) which might be responsible for its stability against 

rupture. This result can be explained with the fact that the horizontal wrinkle represents a post-bending 

configuration of the vertical one, hence similar friction, but the topology of the first had a better time to 

relax and conform to the basal plane, hence higher stability is achieved at high normal loads.  
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Figure 5: Topography, friction force maps and dependence on normal load for E and horizontal 

and vertical Wr in CVD graphene. (a-d) AFM topography of CVD graphene over silica substrate at 

different applied loads. (e-h) Corresponding friction maps. The manipulation of graphene initiates from 

the E region and progresses up to the rupturing of Wr. (i) Load dependent friction curve showing the 

trend of FF at different FN; silica substrate shows the highest FF values while defect free basal graphene 

plane (1LG) has lowest FF with intermediate values from the E and Wr. (j) Load dependent friction of Wr 

of standing collapsed and folded wrinkle; the data from 1LG basal plane graphene is used for the 

comparison under same FN. (k) SEM image of the DLC tip after wear of the graphene sheet showing few 

graphene debris attached to the tip. 
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The adhesion force map measured from the silica substrate to the 1LG basal plain are reported in fig.6 

at two different regions showing higher values of adhesion force at the E region than 1LG. The 

measurement was carried out with force-distance spectroscopy by calculating pull-out forces. The 

average value of adhesion force for 1LG is measured as 9.18 ± 2.2 nN and at E region is 13 ± 2 nN. A 

hydrophilic surface like silica has higher affinity to deposit air-borne impurities and attract moisture (i.e. 

water molecules) responsible for the higher adhesion force at the E. Therefore, at the proximity of the E, 

carbon atoms of graphene have a stronger interaction with the sliding probe 11 than basal plane graphene 

leading to higher magnitude of friction as compared to 1LG and 2LG 11. The absence of hexagonal 

symmetry at the E regions which make it mechanically vulnerable in friction operations that leads to 

elastic strain, wrinkle formation, peeling and fracture induced peeling19. Deng et al. 2 observed significant 

contrast for the friction and adhesion forces for graphene-silica system for both diamond and silica 

cantilevers. We observed similar frictional behavior for the CVD as well as for the ME graphene figure 

(S3-S5). The obtained friction data are in close agreement and with the measurements carried by Vasiƈ 

et al.19. The influence of air-borne impurities induced friction is also studied by a separate friction 

measurement in controlled nitrogen atmosphere complemented with FEM simulation (figure S6). We 

obtained lower values of friction force in nitrogen conditions with respect to the air which validates the 

role of airborne impurities.  
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Figure 6: (a, b) Adhesion force map of 100 sampling points carried out over CVD graphene from silica 

substrate to 1LG. (c, d) Adhesion force map by interpolation of 25 sampling points of silica substrate 

surrounded by graphene. The color map shows the distribution of adhesion force which is highest at the 

silica region and lowest in 1LG. Scale bar shows the conversion from pA to nN units using data from the 

pull-off force. 

The trend of load dependent friction in fig 3c and 5i (justifying vanishing FF at negative values of FN ) is 

well described according to the following classical law40: 

 

 FF=µ(FN+FA)+FFo (1) 
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where, µ is the friction coefficient (
d𝐹F

d𝐹N
), Fa is the “adhesion” force between the tip apex and graphene 

measured from pull-out values and FFo is the friction force recorded for FN +FA = 0 nN. The coefficient of 

friction (COF) values measured by linear fit of the FF vs FN curves of the structural defects are normalized 

by COF value measured from its corresponding 1LG and are summarized in table 1. It clearly shows a 

trend in frictional characteristics of the structural defects depending on chemistry of the tip, shapes (see 

figure S7) and the vital role of atmospheric conditions to influence COF values. All measurements are 

showing E is the most vulnerable in air conditions than SE and the Wr regions, while 2LG can bear the 

maximum normal force.  

 

Table 1: The COF values from silica substrate, E, SE and Wr normalized by COF data obtained from its 
corresponding defect free 1LG of graphene in air conditions for different probes and related FEM 
predictions (assuming absence of air borne impurities, thus closer to nitrogen conditions).  

COF sample/COF 

1LG 

DLC 

probe 

(air) 

Si Probe 

(air) 

Si Probe 

(Nitrogen) 

FEM 

Silica substrate/1LG 5.33 13.46 9.78 - 

E/1LG 4 3.84 1.30 1.46 

SE/1LG 1.63 2.30 0.8 0.78 

Wr/1LG 0.66 2.25 - - 

2LG/1LG 0.65 0.4 0.64 0.69 

 

Molecular dynamics simulation has been implemented to investigate the mechanical response of the 

step edge with different range of normal force (FNS) from 45-82 nN, fig. 7a,b and from 80nN-128nN, 7c,d. 

The simulation set-up is described in the Methods section and the top view of the set-up is given in fig. 

figure S8 in supplementary section. The normal force in the simulation FNS is controlled by managing the 

vertical separation from the surface atoms of graphene. In the subsequent stage of sliding, the probe 

and graphene terrace shows lower friction force (FFS) than at step edge, see a1 in fig. 7a. The friction is 

further increased due to a higher interaction of the tip atoms with the step edge, see b1 in fig. 7a, that 

led to resistance from the step edge atoms. Under given load range, the probe caused elastic folding of 

the graphene step edge, c1 in fig. 7a. Thus, enhanced friction force was generated due to out-of-plane 

deformation (see vertical height, fig. 7) counteracting the van der Waals interaction between graphene 

sheets (i.e. between 1LG and 2LG). Folding at c1, fig. 7a, initiates for FNS =81.3 nN and FFS= 39.6 nN. 

The friction decreased when the contact point of the probe passed over the folded step edge atoms. At 

higher normal force range (FNS ≈ 80nN to 128nN, see fig. 7c, d), the probe displaced the graphene SE, 

which in turn generates a buckled structure in in the SE region. The friction forces at the buckled SE 

regions is nearly 2.5 times higher than 1LG basal plain.  
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The simulation set-up comprises rigid boundary atoms which are artificially fixed and acted as the 

strained site. Hence, one can obtain the different value of FFS by changing the boundary conditions or its 

confinement which affect the topography of the basal plane (see fig. S8). Nevertheless, our simulation 

results illustrate the buckling mechanism followed by the displacement of step edge atoms might be a 

precursor mechanism for causing tearing at the step edge graphene (see supplementary video SV). 

Quantitative measure of the structural defect opposition to the lateral movement of the probe is the 

cumulative work of the probe during its sliding motion, determined as follows: 

   

   

where, LJ is the lateral force corresponding to the XJ displacement of the probe. For fig. 7a it is calculated 

as 0.564 KeV whereas for fig. 7c is 1.153 KeV. This result shows that the work carried out by the probe 

to fold graphene step atoms is half the value for buckling and tearing.  

 

𝑊 =
1

2
  𝐿𝑖+𝐿𝑖−1 

𝑛

𝑗=1

 𝑥𝑖−𝑥𝑖−1  1 

a b

(2) 
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Figure 7: MD simulated friction force profiles and related configurations of SE scanning at two 

different normal force ranges. The vertical dashed lines identify the position of the E. (a) In the 

lower panel normal force range elastic folding of the SE during tip interaction is observed. (b) Snap shots 

of three conditions a1, b1 and c1 (folding initiation) given in panel (a). (c) At the higher normal force range 

“buckling” (starting just after a2) followed by tearing (at b2) of SE are observed. After tearing, the friction 

force drops (b2 to c2). (d) Snap shots of the three conditions a2, b2 and c2 given in panel (d), also 

showing tip wear.  

 

Conclusion 

The structural defects, namely E, SE, and Wr were scanned through AFM at different normal force in 

both ME and CVD graphene samples. Lateral deformation appeared higher at the E than at the SE 

regions for the ME graphene. The deformation phenomenon may yield into folding, buckling and tearing, 

according to load conditions and defect type as demonstrated by MD and FEM simulations. The 1LG 

exhibited SE normal forces up to FN=74 nN while wear initiated at the E at around FN= 57 nN. It is shown 

that the basal layer of graphene significantly contributes in the load and friction bearing capacity of a line 

defect. Airborne impurities might enhance the interaction between probe apex and the SE atoms, 

affecting friction measurements. Normalized COF values from the structural defects with respect of 1LG 

quantify a trend of higher COF values from E and SE. All these factors lead to the detrimental effect on 

loading bearing capacity of the E and SE regions. Nevertheless, the role of impurities and its effect on 

the tribological characteristics of such defects is worthy for further investigations. 

In CVD graphene, horizontal Wr was found to be more robust than vertical ones, whereas the E was the 

weakest against friction and normal forces. For Wr, the initiation of the wear appears at the interface 

between 1LG and Wr. Using DLC and Si tips, we found that the CVD graphene is better as a protective 

coating under sliding operation than ME graphene, due to the minimal presence of E and SE in the former 

category.  

 

Materials and Methods: 

Natural graphite was used as a source of graphene layers, which is mechanically peeled off through 

scotch tape method and physically deposited over silica substrate (300 nm oxide layer). The produced 

sample is annealed in Argon atmosphere at 450oC for 3 hours to remove organic impurities. The number 

of atomic layers of graphene were determined through Raman spectroscopy (Horiba, Jobin-Yvon 

spectrometer model: Labram, 632.8 nm wavelength, spot diameter ∼3-4 μm). CVD graphene over silicon 

sample (Gr/Si-CVD) was commercially obtained from Graphenea (Graphenea Inc., Spain). 

AFM measurements in nitrogen condition were carried out as follows: the graphene sample was inserted 

into an AFM set-up (commercial Enviroscope system by VEECO) with optional sample heater 
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(Enviroscope P/N: ESHTH), controlled by the Nanoscope IV unit. The AFM chamber is connected with a 

turbomolecular pump and an oil- free scroll vacuum pump to carry out measurements in high vacuum 

(10-5 Torr). The sample was heated inside the AFM chamber at 150o C for two hours in vacuum. After the 

cooling of the AFM chamber in vacuum, Nitrogen flux is introduced into the AFM chamber to carry out 

FFM measurement in Nitrogen atmosphere. FFM measurement was also carried out in air condition 

using Solver P47H from NT-MDT in contact mode operation using lateral force channel for forward and 

backward direction. 

Commercially available silicon tips PFQNE_AL from Bruker, (MikroMasch model No. CSC37/noAl, NT-

MDT model No. CSG01, NSG10, and DCP01 (Silicon probe coated with diamond-like coating) have been 

used for the topographic analysis and friction measurements. Force-distance (F-D) curves were carried 

out over Si wafer to measure the sensitivity of the photodetector that allows conversion of units from 

volts/Ampere to nanometers using the slope of the forward part of curve. The comprehensive detail of 

the procedure can be found elsewhere 41.The cantilevers were calibrated by following Sader method 42-

43 to measure normal and lateral spring constant of the cantilevers. The bending and torsional elastic 

stiffness of the cantilever were measured ~ 0.4 N/m and (2-3) 10-8 Nm, respectively. Lateral force (FL) is 

derived from the twisting of cantilever during scanning which is deduced from the lateral photodetector 

voltage following the procedure described in these articles41, 44 with the assumption of the circular shape 

of laser beam on the photo detector. We refer FF values as the spatial mean of FL recorded after scanning 

of tip in forward and reverse direction. In that calculation, lateral sensitivity of photodetector was assumed 

to be equal to the sensitivity measured in normal bending of cantilever. 

Before performing FFM measurement, the sample was mechanically cleaned in the AFM in contact mode 

by a different cantilever. Three different graphene flakes has been used for air condition for ME graphene 

and four different regions has been explored over polycrystalline sample (Gr/Si-CVD). The FFM 

measurement was carried out at an area 1x1µm2 to 3x3 µm2 while systematically increasing normal force. 

This procedure allowed to analyze 1LG, 2LG, SE and silica in the same acquisition and useful to carry 

out comparative studies. After each session of the FFM, F-D curves was performed for pull-off 

measurements and later cantilevers were passed through silicon grating sample (model no. TGT1) to 

monitor the shape of the tips.  

SEM (scanning electron microscopy) were carried out over Gr/Si-CVD sample using NOVA Instrument 

operated in SED mode in 10KV. 

The finite element simulation model has been developed in order to reproduce a continuous scan from 

substrate to 2LG passing through E and SE. The substrate and the tip are modelled with solid elements 

while the graphene flake via shell elements (thickness of one layer = 0.066 nm =0.34/5 to properly 

account bending stiffness of the layer 45). Van der Waals interaction between all the bodies of the model 

(tip with flake and substrate, flake and substrate, graphene layers) are modelled via a cohesive zone 

model based on the Lennard-Jones 6-12 potential 46. The tip, subjected to imposed FN can slide in the 

xy plane and a constant translational velocity is imposed in the X direction (rotation of the tip is not 
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permitted). Friction coefficient is determined by computing the x component of the contact force on the 

tip (FL = FF). 

The molecular dynamic simulations were carried out using the ReaxFF forcefield7 implemented in the 

LAMMPS package 12 at 300K using a time step of 0.5fs. The tip is made by 4099 silicon atoms packed 

in a ~30Å radii hemisphere. Its top part (1171 atoms) was considered as a rigid body while its bottom 

part (2928 atoms) contains atoms that can move freely. The tip was moved using three different springs 

which are attached in one extremity to the center of mass of the rigid body and in another extremity to a 

point on the x, y and z axes. The spring constant is 500 Kcal/(mol∙Å²) in the plane (x and y) and 800 

Kcal/(mol∙Å²) in the vertical (z). Moving the attachment point with a constant velocity (0.5x10-5nm/fs in 

our simulations) allowed us to measure the interaction force between the tip and the surface in a direction 

which corresponds to the experienced force by the spring in that direction. To avoid the rotation of the 

tip, its angular momentum was set to zero at every simulation step. The silica substrate is formed by ~ 

11000 atoms packed in 150 Å x 150 Å x 20 Å flake which was first minimized and then thermalized using 

the NVT ensemble for 400ps. After that, the graphene sheet formed by ~ 13000 atoms was mounted on 

the substrate and thermalized for 400ps using NPT ensemble keeping the external pressure null in the 

periodic direction to avoid any kind of initial stress. Due to the network mismatch between the graphene 

sheet and the substrate, the substrate was built slightly shorter than the graphene sheet. The silicon tip 

was minimized and thermalized in the NVT ensemble for 400ps. Then, the simulation begins using the 

NVT ensemble and keeping the silica substrate and the graphene borders fixed. First, the tip starts to 

lower down toward substrate until the desired normal force achieved between the tip and the surface. 

Sequentially, the tip starts to move orthogonally to the edge axis In MD simulations, we fixed the border 

to prevent translation of the graphene sheet under the force of the tip. This translation is prevented in the 

experiments by interactions between graphene and the substrate, in regions where graphene is not 

suspended (simulating this entire setup is beyond the capabilities of computational infrastructure are not 

needed here). By reducing the size of the graphene flake, we also accelerate the entire duration of 

fracture process. We observed good agreement between results from simulations and experiments 

regarding the friction forces. 

 

Supporting Information 

Thickness measurement and roughness distribution of ME and CVD graphene by AFM (intermittent 

contact mode), SEM, Raman spectroscopy. Friction profile using Si and DLC probe at fixed load and 

load dependent friction curves. Mechanical cleaning of graphene to remove air borne impurities and 

conformation of graphene flake with silica substrate. Friction and adhesion map of different ME graphene 

flakes. Kelvin Probe force microscopy to show the distribution of charges around structural defects for 

ME and CVD graphene. Intermittent contact mode image of torn graphene from the edge as well as from 

the step edge after FFM measurements. Adhesion map of CVD graphene after tearing. Set-up of 

molecular dynamics simulation from 1LG-2LG over Si substrate. The Supplementary Videos shows the 

different phenomena of deformation of the step edge region under different applied force. 
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Supplementary Information 

 

Figure S1: Topography (upper row) and frictional force (lower row) characteristics of the graphene wrinkle 

as compared to its surrounded graphene basal plain obtained at different locations from different 

cantilevers. The cantilever of stiffness Kn  = 1.3 N/m for the panel (a) and (b) and Kn = 2.6 N/m for the 

panel (c) and (d) were used for the friction force measurements. The applied normal force is slightly 

increasing from panel (a) to panel (d). Wrinkles of different altitude, orientation and width show a contrast 
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in friction force as compared to its surrounding graphene. The scale bar clearly differentiates the higher 

altitude of the wrinkle responsible for the larger friction force to the cantilevers.  
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Figure S2: (a) AFM topographic image (intermittent contact mode) of ME graphene after mechanical 

cleaning in contact mode operation. The bright color in AFM topography represents elevated graphene from 

the substrate. This is validated by line profile over silica surface parallel to the axis of the graphene sheet. 

The altitude of 1LG is increasing from the basal plane (B) to the vertex (C) from 0.2 to 1.2 nm and drop 

again at point A (silica substrate). (b) Topography profile of silica surface parallel to the line profile on 1LG 

shows constant height, thus the absence of any artefact. It shows graphene edge region along the vertex 

has lower interaction with silica substrate as compared to the basal plane. (c and d) Friction map of ME 

graphene showing friction contrast at the 2LG, 1LG, SE, and E at fixed FN. Friction line profile along 2LG-

edge to 1LG-edge showing slight differences in the FF, which corresponds in altitude to the edge defects. 

(e and f) Raman spectra of 2D peak for 1LG (~ 2651 cm-1) and 2LG (2654 cm-1) respectively. The monolayer 

is fitted with a single Lorentzian curve with the full width half maximum (FWHM) ~ 29 cm-1 and the bi-layer 

is fitted with four lorentzian curves1. (g and h) Roughness distribution of 1LG over silica substrate and 1LG-

2LG is used to measure the thickness of graphene layer/s. The Gaussian fit of the roughness distribution 

shows average altitude difference between 1LG-silica and 1LG-2LG, being 0.7 nm and 0.38 nm 

respectively. 
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Figure S3: Topography and friction force maps dependence on normal load for E and SE in ME graphene. 

Manipulation of graphene flakes with increasing normal force from 50 to 70 nN, leading to observations 

suggesting folding (a) cutting of the folded graphene, (b) tearing and (c, d) wear. The FF maps are given in 

panels (e-h). (i) FF vs FN for the two different basal plane graphene flakes (no. 1 and 2) for 1LG, and 2LG 

(repeated twice). 1LG has higher friction force than 2LG for all normal forces. (j) FF vs FN for E and SE, 

which leads to deformations in graphene flakes, like folding (green dashed circle) and wear (blue dashed 

circle). The E and SE regions of ME graphene by varying the normal force FN between 50 to 70 nN. The FF 

increases with higher FN and deformation occurs at the E region by folding fig. S2 a, e, cutting b, f and wear 

d, h phenomena. The friction force from 1LG, 2LG, SE and E are reported in fig. S2i, j for two different ME 

graphene flakes (flake no. 1 and 2). The 2LG surface shows the lowest friction forces for all applied FN 

whereas E the highest values. The tearing of E is observed at FN ≈58 nN and for SE at ≈74 nN. 
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Figure S4. (a) Intermittent contact mode carried out after FFM operations showing rupture of the edge and 

initiation of tearing at the step-edge for fixed normal load of 74 nN. (b) zoom region around the broken step 

edge. 
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Figure S5: (a, b) Topography and friction force map of ME flake no. 2 that include E and SE. (c, d) Adhesion 

force map (25 sampling points) has been carried out at the interface between 1LG and silica substrates by 

silica probe. The pull-off force map (using re-tract part of the curve) at the interface between graphene edge 

region and silica shows higher adhesion force at the 1LG (edge region) than graphene basal plain (1LG), 

indicating the higher affinity of the edge region towards sliding tip.  
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Figure S6: FEM simulation for load dependent friction on 1LG, 2LG and experimental FFM measurement 

in nitrogen atmosphere. (a) Set-up of finite element method (FEM) of 1LG and 2LG flake against 

hemispherical silicon slider. (b) FEM based load dependent friction and COF values measured by linear fit 

for 1LG (~0.089) and 2LG (~ 0.061), SE (~0.07) and E (~0.11). (c) Experimental FFM measurement carried 

out in nitrogen atmosphere are in close agreement with FEM showing COF values nearly 0.092, 0.059, 

0.12, 0.17, respectively.   

The finite element simulation model has been developed in order to reproduce a continuous scan 

from silica substrate to 2LG passing through E and SE (Figure S5. a). The substrate and the tip are 

modelled with solid elements while the graphene flake via shell elements. The thickness of graphene was 

reduced by a factor 5 2, t = 0.066 nm = 0.34 nm/5, to not overestimate transversal stiffness of the layer 

and the nominal elastic modulus of graphene (1 TPa) was scaled accordingly in order to preserve 

membrane stiffness Et = const. The molecular van der Waals interaction between all the bodies of the 
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model (silica substrate, graphene layers and silica) are modelled via a continuum cohesive zone model 

based on the Lennard-Jones (LJ) 6-12 potential as derived and described extensively by Jiang et al.3 The 

cohesive normal stress between graphene layers is expressed as derivative of the variationally cohesive 

energy per unit area with respect to the nodes separation distance (perturbation) 𝑣: 

 𝜎cohesive,  G/G = 8𝜋𝛹C
2𝜀C-C𝑠C-C (

𝑠C-C
5

(ℎG/G + 𝑣)
5 −

𝑠C-C
11

(ℎG/G + 𝑣)
11) (S1) 

where 𝛹 is the number of graphene atom per unit area, 𝜀C-C and 𝑠C-C are the LJ potential parameters for 

carbon-carbon interaction3, ℎG/G = √2𝑠C-C
6

 is the graphene inter-layer equilibrium distance. Note that 𝑣 

corresponds the current node-to-segment separation between contacting interfaces and that the cohesive 

stress nearly vanishes for 𝑣 > 3ℎG/G. On the other hand, the interfacial shear strength associated with van 

der Waals adhesion has been demonstrated to be negligibly small3, thus 𝜏cohesive, G/G = 0. 

Analogously for the graphene-silica interaction we have: 

 

𝜎cohesive,  G/SiO2
= 8𝜋𝛹C 𝛹Si 𝜀C-Si𝑠C-Si (

𝑠C-Si
5

(ℎG/SiO2
+ 𝑣)

5 −
𝑠C-Si
11

(ℎG/SiO2
+ 𝑣)

11)

+ 8𝜋𝛹C 𝛹O 𝜀C-O𝑠C-O (
𝑠C-O
5

(ℎG/SiO2
+ 𝑣)

5 −
𝑠C-O
11

(ℎG/SiO2
+ 𝑣)

11) 

(S2) 

with 

 ℎG/SiO2
= (

𝜀C-Si𝑠C-Si
12 + 𝜀C-O𝑠C-O

12

𝜀C-Si𝑠C-Si
6 + 𝜀C-O𝑠C-O

6
)

1/6

 (S3) 

where the LJ parameters were taken from Kumar et al..3 

Analogously to MD simulation, the tip is subjected to imposed FN on a surface and translated in the xy plane 

with a constant velocity towards the SE. Rotations of the nodes of the tip are fixed, thus tilt of the simulated 

AFM is not permitted. Friction force is determined by computing the component of the contact force on the 

tip (FL = FF) parallel to scanning motion and the friction coefficient is determined as 
𝑑𝐹T

𝑑𝐹N
 . 
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Figure S7: Line profile of different tip apex scanned over the standard grating. The SEM image DLC tip post 

FFM measurement is inserted in the main text, since grating scanning could remove the graphene flakes 

around tip apex. 

 

 



S-10 
 

 

 

Figure S8. Set-up of MD simulation. Top view of corrugated arrangement of single layer, bi-layer and step-

edge atoms. These corrugations were achieved through energy minimization followed by thermalization of 

the system. The colour distribution is associated with the position of graphene atoms in vertical direction 

(z) giving a qualitative sight of the corrugation of the graphene layers. 
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